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NOMENCLATURE

Symbols

B

C

Cd

C_

Cm

Cp

h

H

k

P

R

Re

S

t

X

Y

Z

Ct

F

/]

p

¢
O3

f_

location of singularity on real axis in (-plane

boundary of fluid in region R

airfoil chord

drag coefficient

lift coefficient

pitching-moment coefficient

surface pressure

unit directional vector in _-plane

total head

scale factor of transformation

reduced frequency, ftc/2v_

unit normal vector on B directed outward

pressure

gradient of fundamental solution of elliptic equations

region of fluid between B and 5'

Reynolds number, cv_/v

solid surface

time

velocity

coordinate in physical plane

coordinate in physical plane

complex variable in physical plane

angle of attack

density of fluid

complex variable in computational plane

circulation

kinematic viscosity

radial coordinate in (-plane

circumferential coordinate in (-plane

vorticity

oscillation frequency of pitching airfoil

Subscripts

G grid

o quantity in po space

p point vortex

free-stream condition

Superscript
- Fourier coefficient



Acronyms

AFDD

BVI

HACR

Aeroflightdynamics Directorate
Blade-vortex interaction

Helicopter active control rotor
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ZETA II CODE FOR DETERMINING THE FLOW AROUND

MULTIELEMENT AND DEFORMABLE AIRFOILS

C. M. Wang,* J. C. Wu,* K. W. McAlister, and C. Tung

Aeroflightdynamics Directorate, U.S. Army Aviation and Troop Command, Ames Research Center

SUMMARY

The present NASA-University consortium involves research on the development of an efficient

and accurate numerical procedure to treat general, unsteady, viscous flows. Of particular interest in the

present work are flows relevant to helicopter rotors. Special efforts are centered on new concepts applied

to the rotorblade configuration on the helicopter to improve the rotor aerodynamic characteristics. Among

them, airfoil dynamic stall and the aerodynamic noise of vortex-airfoil interactions were extensively

studied by using the numerical procedure.

The procedure, based on the formulation of an integral representation of the velocity vector and the

vorticity-transport equation, is used to solve incompressible Navier-Stokes flows. ZETA, a computer

code developed at Georgia Tech, is used as the basis for the development of an extended computer

code, ZETA II. The ZETA code is very efficient in the treatment of single, solid airfoils undergoing

arbitrary motions. The extended ZETA II can treat the two-element airfoil, the deformable airfoil, and

vortex-airfoil interaction.

New concepts aimed at improving the helicopter maneuverability and susceptibility are studied,

including the slatted airfoil and the deformable airfoil. Numerical results obtained by using the ZETA II

code show that both slatted and deformable airfoils reduce the dynamic stall and that the deformable

airfoil reduces the blade-vortex interaction (BVI) noise.

INTRODUCTION

The development of new-generation helicopters to operate at a much higher performance level than

in the past requires advanced design concepts and demonstrations. The new generation of helicopters

must perform well, particularly in the areas of nap-of-the-Earth, deep-penetration operations, and air-

to-air combat. The technology base needed to meet the requirements of a highly maneuverable, agile,

and survivable rotorcraft covers the fields of aerodynamics, acoustics, dynamics, and flight controls.

The U.S. Army is extending the currently available technology base in a demonstration program called

the helicopter active control rotor (HACR) program. The objectives of the program include increasing

maneuverability/agility by 50 percent and reducing the acoustic detection range by 50 percent.

*School of Aerospace Engineering, Georgia Institute of Technology, Atlanta. Georgia.



The most important element of the rotorcraft for providing the lift, control, and speed is the main

rotor itself. The rotor is also a major source of acoustically detectable radiation. In order to achieve

the capabilities desired in the new-generation helicopters, the main research and development effort

here will be placed on the demonstration and effectiveness of new concepts for rotorblade design. In

particular, the maneuvering capability can be improved by reducing or suppressing the vibratory loads on

the rotorblades caused by flow separation and dynamic stall. Suppressing dynamic stall would expand

the stall-limiting boundary of the rotor, thereby increasing the available load factor in certain flight

maneuvers. The vibratory loads of the rotor are caused by the angle-of-attack change of the blade,

which results in a small angle on the advancing side and a large angle on the retreating side. During

a dash or a rapid maneuver, the rotorblades often encounter stall on the retreating side, which causes a

rapid loss in lift and a sudden increase in both drag and pitching moment.

The impulsive noise generated by the rotor comes from two main sources: the compressible effect

near the blade tip and the blade-vortex interaction (BVI) in descending or maneuvering flight. The

BVI noise is most critical near the leading edge of a blade when the vortex trajectory is nearly parallel

to the blade span. The strong effect of the passing vortex is manifested by a large fluctuation of the

surface pressure as the vortex passes close to the leading edge. This large fluctuation is the source of
BVI noise.

The requirement for improved maneuverability and reduced susceptibility clearly demands a sub-

stantial growth in technologies that address rotor aerodynamics. New passive- and active-control con-

cepts that have the potential to meet the new requirements must be considered with a more thorough

physical understanding of the flow phenomena described earlier. Substantially improved prediction ca-

pabilities are key elements to providing an understanding of these flow phenomena and to predicting the

aerodynamic loads. Various concepts for improving rotor aerodynamic characteristics, including airfoils

with a slat or a slot, airfoils with flow energizers, and airfoils that deform, have been proposed by U.S.

Army Aeroflightdynamics Directorate (AFDD) researchers.

The main objective of the present study is to demonstrate the effectiveness of some of these

new concepts in reducing dynamic stall and BVI noise. In order to do this, efforts are placed on the

development of a computer code that can efficiently predict flow phenomena and aerodynamic loads.

These flow problems are directly related to the implementation of the new concepts. Georgia Tech

researchers have developed a computer code, ZETA, that can predict complex flow phenomena of

airfoils undergoing arbitrary motion. The code predicts airfoil load hysteresis loops of dynamic stall

to a degree that matches the available experimental data within the experimental error band. The code

is based on a vorticity-velocity formulation and an integral formulation for the velocity vector. The

efficiency of the code is attributable to the confinement of the computation to the vortical region only.

The large potential region surrounding the vortical region does not enter into the computation procedure.

For problems of practical interest, the size of the vortical region is much smaller than the size of the

potential region.

Furthermore, the vortical region can be partitioned into attached- and detached-flow zones. In

the attached-flow zones, the flow is attached to all solid surfaces, and the customary boundary layer

approximations are justified. Therefore, the boundary layer equations are solved in these zones. The

Navier-Stokes equations are solved in the detached-flow zones, which consist of the separated- and

the wake-flow zones. An iterative procedure is required in the detached-flow zones, whereas a simple
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marching procedure is used in the attached-flow zones. The marching procedure takes very little time

compared to the time consumed for an iterative procedure. The high efficiency of the numerical,

zonal method permits an effective way for conducting a parametric study of the new concepts to be

implemented on helicopter rotors.

The numerical procedure of the ZETA code is extended in the present effort for treating problems

of a broader scope. A numerical, conformal procedure is established first such that two-element airfoil

geometries and deformable airfoils can be handled. The conformal-mapping technique is an important

element of the present numerical procedure because the conformal mapping leads to the simplest possible

form of the governing equations to be solved, and the integral formulation derived for the velocity can

be directly used. The ZETA code, developed for solid, single-element airfoils, uses conformal-mapping

techniques based on an analytical method. In the extended code ZETA II, conformal mapping is

performed numerically so that it can treat two-element and deformable airfoils. The extension from

ZETA to ZETA II also includes certain numerical procedures that are made suitable for two-element

and deformable airfoils. For BVI problems, a passing vortex is modeled by a single-point vortex that

passes close to an airfoil. The high efficiency of the ZETA code is essentially retained in the extended

ZETA II code.

Various new concepts for rotorblades are demonstrated by using the newly developed code. In

the present study, the slatted airfoil and the deformable airfoil are extensively investigated in order to

demonstrate an improvement on dynamic stall and BVI noise.

MATHEMATICAL FORMULATIONS

Through the introduction of vorticity, a general, unsteady, viscous-flow problem can be partitioned

into its kinematic and kinetic aspects. The kinematic aspect describes the velocity field (subject to the

velocity boundary condition) corresponding to the vorticity field at any instant of time. The kinetic

aspect describes the transport of the vorticity field through convection and diffusion. The vorticity-

transport equation is elliptic in space, and, therefore, the vorticity on the flow boundaries is required.

The values of vorticity on the solid boundaries, however, are not given directly from the physics of a

flow problem. An accurate and unique determination of the boundary-vorticity values is essential. In the

present approach, the boundary-vorticity values are determined from an integral constraint derived from

the velocity-integral representation. The theoretical foundation of the boundary-vorticity evaluation was

established by Wu (ref. I).

Airfoils in the physical plane (z-plane) are conformally transformed into simple geometries in

the computational plane (_-plane). By using conformal mapping, the integral representation of the

velocity vector, derived in the physical plane, can be directly used in the computational plane. The

vorticity-transport equation is also in its simplest possible form in the computational plane. In addition,

the circulation of a passing vortex is unchanged by the transformation between the two planes. A

fast Fourier transform can be applied to the computational procedure, resulting in the present, efficient

computer code ZETA II.
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Conformai Mapping of Two-Element Airfoils

The conformal mapping technique used in this study was introduced by Ives (ref. 2) and modified

by Hall and Suddhoo (ref. 3). In particular, a slatted-airfoil geometry is transformed from the physical

plane to two concentric circles in the transformed plane. The following mapping steps are involved in
this transformation:

1. A Karman-Trefftz transformation maps the slat onto a near circle while the main airfoil deforms

slightly.

2. Another Karman-Trefftz transformation maps the main airfoil configuration onto a near circle

while the near circle corresponding to the slat deforms slightly.

3. A Theodorsen numerical transformation maps the near circle corresponding to the main airfoil

onto a unit circle. The near circle corresponding to the slat deforms slightly again. The near circle is
located outside the unit circle.

4. A bilinear transformation maps the near circle from outside the unit circle to a near circle inside

the unit circle. The external-flow problem is now converted into an internal-flow problem. The far-field

boundary of the external-flow problem is mapped onto a singular point located on the real axis in the

annular region.

5. A Garrick-Theodorsen numerical transformation maps the near circle onto a circle. The singular

point will, in general, move off the real axis.

6. A rotation brings the singular point back to the real axis in the transformed plane.

The above transformation steps can be used to transform any two-element airfoil geometry (e.g.,

an airfoil-flap configuration). For problems with a point vortex moving in the fluid, the location of the

vortex at any instant can be easily correlated between the physical and the computational planes. In

this case, the transformation procedure reduces to a simpler procedure that transforms a single airfoil

onto a unit circle. This procedure allows an airfoil to perform different types of deformation and the

shape to be transformed conformally. In the simpler procedure, only steps 2, 3, and 4 are needed, and

the singular point is located at the origin of the computational plane.

Kinematics

The integral representation of the velocity vector _7 in the (-plane (in cylindrical coordinates p, q_),

with a passing-point vortex of circulation Fp at a location _p, is:

(l)

where o7 is the vorticity vector; H is the scale factor of the transformation, H : [dz/d(]; B is the

boundary of the fluid region R; 7: is a unit normal vector on B directed outward from R; the subscript
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o indicates that a variable or an integration is in the _ space; and (_ is the gradient of the fundamental

solution of elliptic equations

The boundary integral in equation (1) represents the velocity boundary contributions. It includes

the solid-body motions and the free-stream velocity if the reference frame is moving with the solid

bodies at a velocity -_7oc, where _7oc is the free-stream velocity. It may also include the surface velocity

in the case where the body is undergoing a deforming motion.

In the transformed plane, the singular point introduced by the bilinear transformation represents the

far-field boundary that is infinitely far from the solid bodies. The boundary B in equation (1), therefore,

must include an infinitesimal circle surrounding the singular point. The boundary integral around this

small circle can be analytically evaluated since the velocity on the circle is known through the conformal

transformation. After the analytical integration on this circle, the singular point is mathematically

excluded from the computational plane. In actual computations, a small but finite region around the

singular point is removed. In the physical plane, the removal of this singular region represents the

computation region in a finite region surrounding the solids. The excluded region, in general, contains

vorticity. For example, for a steady flow around an airfoil at a small angle of attack, the excluded region

contains the starting vortices that are shed from the vicinity of the airfoil. For a general, unsteady flow,

the region contains no vorticity at the beginning but may contain vorticity later on as the vorticity that

is shed by the airfoil eventually reaches this region. The excluded region, therefore, may possess a

circulation. In the transformed plane, the singular region serves as a vortex sink, which draws the

vorticity that was shed earlier from the vicinity of the solids. The circulation of the excluded region

contributes to the velocity field in the transformed plane in accordance with the Biot-Savart law. Taking

the above into consideration, one has from equation (1),

(2)

where the integrals over S'1 and $2 represent the velocity contributions from the solid motion of the

slat and the main elements of the airfoil, respectively (for the case of a slatted airfoil); F S is the

circulation of the excluded region; _7F represents the contribution from F S per unit circulation; and gS

is the contribution from the free stream that has been integrated analytically. Considering the bilinear

transformation,

1 - (2(
z = ---- (3)

(-a

that transforms the infinity boundary in the z-plane to a point located at a on the real axis of the (-plane,

one has



+[sinotoo((_t2-Fp2)cos¢--2gzp)--coso_oo(gz2--p2)sin¢]_¢}

(4)

where Ep and E¢ denote the unit directional vectors in the (-plane and c_oc is the angle of attack. In the

present problem, the contribution from the singular point retains the same form of equation (4) since

the bilinear transformation for the singular point basically has the same form. The contribution from

the singular point also includes the effects of scale factors that appear in transformations other than the
bilinear transformation.

The velocity vector _Tr in equation (2) is

-_ sin ¢ p - _ cos ¢

p2 + _2 _ 2_pcos ce-'p + p2 + _2 _ 2_pcos ¢g¢

(5)

Fourier Series Expansion

Let the two components of the velocity vector be vp and v¢. From equation (2), one has

1 woH2oPoSin(¢o - ¢) 1 Vpo[poCOS(¢o - ¢) - p]

Up -- _ /R p20 -7 _ :-2po-7-P-_s(-_)o---- ¢ ) .odpod_o -Jr- _ j(l+S 2 p20 Jr- p2 _ 2pop cos( ¢o - ¢ ) pod¢o

27r i+$2 p2o

V¢oPo sin(_bo - _)

+ p2 _ 2popcos(¢o - ¢_pod¢o + vsp

F S Pp

+ _-_r_ + T-_vp_
(6)

v¢,-
1 w°H2°[p°c°s(¢° - ¢) - P] d d" 1 VpoPoSin(¢ o - ¢)
2,_fR ,,20+ p2_ 2popCOS(,o_ ,)po po_o+ _/s,+s2 po_+,,2- 2,,opcos(,o__),'od*o

1 v¢°[P°C°S(¢° - ¢) - P] d" F__SvF4 ' Fp+_ fs,+S=jo-_z_-_opZOff-epo_:C)po_o+,s, + +_,,p,
(7)



The velocity componentsandthe vorticity areexpandedin Fourierseriesasfollows:

O_O(p) N
+ _'_,[an(p)cosnO + bn(p) sinn¢]Vp- 2

1

_o(p) N
+ _'_,[On(p)cosn¢ + dn(p)sinn¢]v¢- 2

1

a_H 2- (tO(p) N
+ __,[Oen(p) cosn¢ + _n(p) sinn¢]2

1

:co(p) U
+ _-'_[£'n (P)cos nO + _On(P) sin nO]VSp -- 2

1

sO(P) N
+ _--_'_[gn(p) cos nO + {,t(p) sinn¢]vs¢- 2

1

N

eo(p) + _-_[gn(p)cosn¢ + L(p) sin nO]
VFP -- 2

1

_o(p) N
+ _[,0,_(P)cos nO + h_n(P) sin nO]VF¢ -- 2

1

_o(p) x
+ _-_'[pn(p) cos nO + qn(p) sin nO]vpp-- 2

1

_0(p) x
+ y'_[_n(p) cos nq5 + 3n(p) sin nO]

vp,-- 2
1

(8)

Substituting equation (8) into equations (6) and (7) and then performing an analytical integration in the

0-direction yields the following velocity Fourier coefficients:
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(Fs)ao(p)= ao(ps) + :_o(p)+ _o(p) _ + _Oo(p)

1 _P /3n(Po) dpo + -_ _,r_(Po) p dpo

1 )pn-1 1 / \n+l 1(_ )pn-1
+_6_n(1 +-_an(PS)(_) _ n(1

_ 1 Ps (_£),_+1 _ 1 (1 (p_T_-l__ dpob_(P) 2 f, c_,_(_o) dpo -_jp c_,_(pO)#o/

1_ ,, \n+l _On(1)pn_l+ _bn(1)pn-1 + _ n(PS)(_) +

1 (pps) n+l (FS" _ (Fp)

cO(p) = P &O(Po) dpo + cO(PS) + sO(p) + 90(P)
S

1_9 (%(po)(_) dpo--_ fp 5_n(Po) dpo

- 1 1_) / \n+l _n(1)pn_l+ _b'_(1)d_- 9.n(ps)(_) +

+ ½e_(ps) + _(p) + o_(p) _ + ?_(p) _

-fP (___)n+l 1_ 1 (p)n-11 p 3n(po) dpo- i 3n(po) _ dpo

1 / \n+l ldn(].)pn_ 1-- _an(1)pn-l + -_O_n(pS)l_-_) +

+ _dn(ps) + {n(P) + hn(P) _ +jn(P)

(9)

In equation (9), 1 < n _ N and ao(PS), an(ps), bn(ps) ... etc. represent the Fourier coefficients of

the velocity boundary conditions at p =- PS. The small circle of radius PS corresponds to the slat in the

physical plane. The velocity Fourier coefficients, a0(1), an(l), bn(1) ... etc., are the velocity boundary

conditions at p = 1, which denotes the main airfoil. For a single-airfoil case, equation (9) is simplified

by dropping the terms containing PS.

The usage of the Fourier series offers important advantages in the numerical process. It not only

increases the solution accuracy, but it also drastically reduces the computational work. Each velocity

Fourier coefficient relates to the corresponding vorticity Fourier coefficient by a simple, one-dimensional



integral.Also, the integralrelationsstatedin equation(9) give explicitly aseriesof constraintequations
on the vorticity Fourier coefficientsthat allows the explicit evaluationof the vorticity valueson the
solid surfaces.

Vorticity Integral Constraints

The vorticity values on the solid surfaces are determined by satisfying the velocity boundary

conditions. If one applies equation (2) on the solid surfaces $1 and 5'2, the constraint equations for the

vorticity field result because the velocity on the surface is given and the velocities induced by F S and Fp

are known. The vorticity field, therefore, is restricted by the domain integral. Using the Fourier series

with equation (9) yields the constraint equations for the vorticity Fourier coefficients when p = PS:

Atp=l,

'/_-- ]

- n-1
dflo = b,_(1)p_, -1 - {)n(PS) + cn(1)fl S - £2n(PS)

n-i

dpo = --fi,_(])p_-I +_n(ps)+dn(1,)[)5,n-l_d,_(pS)

(lO)

fp - n+l - - - n+l
1 6:n(po)pon+ldpo = _,_(1) - cr_(PS)PS - bn(1) + bn{PS)Ps
5"

1 _,_(po)Po,,,+ldp ° d,_(1) - ,_+1 - n+l= -  n(m)ps___ tn(ps)ps + -
S

(11)

Once the values for _r_ and D_ in the interior of the flow domain are known, equations (10) and (1 I)

give a unique determination of _7_ and/3,, where 1 < _ < N at both p = PS and p = 1. Notice that

these integral constraints are obtained by satisfying the boundary condition on either _,_, the tangential

velocity component, or _.,p, the normal velocity component, on the solid surfaces.

To determine &0 at p = PS and at p = 1, however, one needs additional information. If the

individual circulations around the two closed paths that enclose the slatted and the main airfoils in the

@plane are known, one has
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R1 wH2dR = F1

fR2 wH2dR = F2

(12)

where R1 and R2 denote the flow domains enclosed by the two paths around the slatted and the main

airfoils, respectively. The circulations F1 and F2 are known by tracking the vorticity flowing out of/_1

and R2 at every time step. The principle of conservation of total vorticity gives

lPl + F2 = -1-'3 ( ! 3)

where F 3 includes the integrated value of coil 2 in the remaining computational domain and Foe. Using

equation (8) on the Fourier series expansion of wH 2, one gets the constraints for o_0 from equation (12):

fool &O(Po)podpo F1
S 71"

1 &O(Po)podpo F2
2 71"

where Pl and P2 represent the radii of the two individual closed paths in the _-plane.

(14)

Kinetics

The kinetic aspect of the flow problem is described by the vorticity-transport equation. In the

computational plane, the equation is

H 20_ = V x (_- v_C) x _ + V. (_,W) (15)
Ot

where t denotes the time and u represents the kinematic viscosity of the fluid. For turbulent-flow

calculations, u includes an eddy viscosity that is computed here by the Baldwin and Lomax algebraic

model (ref. 4). The velocity _7G represents the grid velocity observed in the computational plane dur-

ing the airfoil deformation. In the attached-flow zones, the last term of equation (15) is simplified

to O/On(uOw/On), where n is the normal coordinate perpendicular to the streamwise direction. The

vorticity-transport equation becomes a parabolic type in the attached-flow zones. For problems contain-

ing a passing-point vortex, the vortex travels in the flow field with a local velocity that is induced by

all the distributed vorticity existing in the flow field and also by the circulation F S. The circulation

carried by the point vortex Fp is unchanged during its motion in the fluid.

One of the advantages of using the vorticity-transport equation is that the pressure is eliminated

from the mathematical formulation. The pressure on the solid surfaces, wherever needed, is usually

l0



obtained from the normal gradient of the computed vorticity on the surface (ref. 5). Hence, with this

approach, an accurate determination of the normal gradient of the vorticity field is required. However,

this task is difficult when both the magnitude and the gradient of the boundary-vorticity values are large,

as they usually are in high-Reynolds-number flows. In particular, for turbulent-flow computations, the

modeling of flow turbulence usually requires the assumption that different sublayers exist near the solid

surfaces. Substantial uncertainties and inaccuracies in the vorticity-normal gradient are implicit in such

models. To eliminate these difficulties, the present authors reformulated the pressure as an integral

representation by using a principal solution of the Poisson equation (ref. 6). Since the Poisson equation

is the principal solution of the kinematics, that is, the instantaneous relationship between the velocity and

vorticity fields, it is independent of time. It is demonstrated in reference 6 that this formulation yields

accurate pressure solutions. In the present study, this formulation is extended to include multielement

airfoils. The pressure can be computed from the following integral expression:

h(p-) - fS hoG" _odBo -- P_6--_+ fR(_70 × d,dRo +, fs( o × d.). nonBo

° -_ -if(" aodBo

where h is the total head, and it is computed by the Fredholm integral equation of the second kind.

NUMERICAL FORMULATIONS

In the present computation, the airfoil is first transformed to a simple geometry in the computational

plane, and then the computations are performed in this plane. The computational grid is generated by the

numerical, conformal mapping, with proper control on both the radial and the circumferential directions

in the computational plane. If the airfoil undergoes a time-dependent deformation, the conformal

mapping is performed at every time step. The following steps constitute a complete computation cycle,

which advances the velocity and the vorticity solutions from an old time level to a new time level:

1. Perform the numerical, conformal mapping when the airfoil deforms. The grid velocity, #G, is

numerically evaluated in the physical plane and then transformed to the computational plane.

2. Compute the convection velocity of the point vortex in the computational plane, _Tp. This

velocity is that which is induced by all the distributed vorticity existing in the flow field and also by

F S. The distance traveled by the point vortex during a time step, At,, is _pAt/H 2 (where H 2 is the

Jacobian).

3. Compute the distributed vorticity (excluding the surface vorticity, which will be computed in

step 4) for the new time level by solving the vorticity-transport equation (15).

4. Determine the surface vorticity, where the new distributed vorticity is obtained from step 3 and

the new location of the point vortex is known from step 2.

5. Compute the velocity in the vortical region for the new time level by using equation (9).
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In step 3, the vorticity values in the detached-flow zones are obtained by solving a fully im-

plicit finite-difference equation discretized from the vorticity-transport equation. The time derivative is

approximated by a one-step, forward-difference scheme, and the diffusion terms are approximated by

central difference. The convection terms are approximated by a second-order, upwind-difference scheme

(ref. 5). In the present procedure, a line-relaxation technique is used to solve the simultaneous, implicit,

finite-difference equations. The line-relaxation technique involves an inversion of a tridiagonal matrix,

where the unknown vorticity values on the same radial line are to be solved. The vorticity values on

the adjacent radial lines are treated as known values; they are delayed by one iteration count in the

relaxation procedure. During the iteration process, an under-relaxation factor is necessary.

The vorticity values in the attached-flow zones are computed by a marching procedure. The

boundaries between the detached- and the attached-flow zones define the demarkation lines for the next

time step. The vorticity values on the demarkation lines provide the initial condition for the vorticity

in the attached zones, and they are part of the boundary conditions for the detached zones.

In step 4, the boundary-vorticity values adjacent to the solid surfaces are obtained through the

integral constraint of the vorticity-Fourier coefficients. The converged interior-vorticity values obtained

in step 3 are first transformed to the Fourier coefficients, in accordance with the wH 2 expression in

equation (8), along the circumferential direction at each constant radial station. For example,

I f02 6Zn = - wH 2 cos(n¢)d¢ (16)
71"

The integral in equation (16) is replaced by a numerical quadrature. Each vorticity-Fourier coeffi-

cient, except the constant coefficient, is subjected to the two associated integral-constraint equations (10)

and (11 ). This allows the two values of the Fourier coefficient at p = PS and at p = 1 to be determined

uniquely. The constant Fourier coefficient, c_0, as stated earlier, is determined by the conservation of

vorticity; that is, once the quantities of F1 and 1-'2 in equation (12) are known, the boundary values of

this Fourier coefficient are determined by the two separated expressions in the equation. In the present,

unsteady approach, the quantities F1 and F2 are tracked at each time level by recording the amount

of vorticity flowing out of the regions R1 and R2, respectively. After the Fourier coefficients at the

boundaries are known, the vorticity at the boundaries can be easily determined from the wH 2 expression

in equation (8).

Steps 3 and 4 are repeated several times before the numerical procedure progresses to step 5. The

updated boundary-vorticity values may not equal the boundary values used in step 3 to compute the

interior-vorticity values. Once the maximum difference between the updated boundary-vorticity values

and the previous boundary values is less than a prescribed criterion, the computation then is advanced

to step 5. In order to make the process convergent, an under-relaxation factor on the boundary-vorticity

values is necessary. In step 5 the interior-velocity Fourier coefficients are calculated by numerical

quadrature of the vorticity Fourier coefficients, equation (9). That is, only one-dimensional quadrature

is involved for each of the velocity Fourier coefficients. The velocity values are then obtained from the

vp and v_ expressions in equation (8).
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The numerical, conformal mapping procedures are coded in a separate computation module. This

module is executed only once when the airfoil does not deform, but it is executed at every time step

if the airfoil undergoes a time-dependent deformation. The main module of the ZETA II code contains

the numerical procedures as described by steps 1 to 5. The surface pressure is computed by another

module that acquires the velocity and vorticity that are computed by the main module. The module that

computes the surface pressure also computes the skin friction and the aerodyilamic loads.

The ZETA II code is used to demonstrate new concepts that are useful in improving the rotor

aerodynamic characteristics. The present effort is focused on problems of dynamic stall and BVI noise.

The benefits from several new concepts are demonstrated by comparing the numerical results for the

basic, single-element airfoil with those obtained for the slatted airfoil and the deformable airfoil.

DYNAMIC STALL

Several concepts have been pursued by U.S. Army researchers at AFDD in order to decrease and

even to eliminate the undesirable occurrence of dynamic stall. These concepts can be categorized as

either active or passive devices. The active devices include airfoils with blowing/suction on the leeward

side and airfoils with different types of deformation; the passive devices inchlde airfoils with an added

slat or slot geometry. In the present study, the slatted airfoil and several types of deformable airfoils

are investigated. These various configurations are based on the Boeing-Vertol VR-7 airfoil.

Slatted Airfoils

Flow solutions around the basic, single-element VR-7 airfoil and the slatted VR-7 airfoil were

obtained by using the ZETA II code. The Reynolds number (Re), based on the airfoil chord, is 200,000.

A steady flow is fully established around the airfoil at a small angle of attack before the airfoil undergoes

oscillating motion. The reduced frequency (k), normalized by the airfoil half chord and the oscillating

frequency, is 0. I in the results reported herein.

The grids used to predict the load characteristics are 81 × 51 and 121 x 61 divisions for the basic

and the slatted airfoils, respectively. Figure 1 shows sample grids around the basic and the slatted

airfoils. CIoseup views of the grids and the slat geometries are also shown in the figure. The pitching

axis for both the basic and the slatted VR-7 airfoils passes through the quarter-chord location of the

main airfoil, and the airfoil oscillates sinusoidally from 5 ° to 25 °. The experimental hysteresis loops

for the lift, drag, and pitching-moment coefficients are shown in figure 2; measurements were made by

AFDD researchers in their water tunnel. The dynamic stall of the basic VR-7 airfoil (solid line) is quite

evident. The lift-coefficient curve increases for angles of attack up to about 19 ° and then it maintains

a constant value for about 1°. Then the lift coefficient increases again because of the formation of

a leading-edge stall vortex. The airfoil experiences a large nosedown pitching moment as the vortex

moves over the upper surface. When the vortex leaves the airfoil, the lift drops drastically. As for the

slatted VR-7 airfoil (dashed line), no stall vortex forms around the leading edge. The pitching moment

shows no sign of a rapid change at higher angles of attack, and no abrupt drop in the lift occurs.
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The numerical calculation is initiated with the airfoil at o_ = 5 ° and the flow impulsively started

from rest. Once the solution converges, the oscillating motion of the airfoil is allowed to begin. The

predicted lift, drag, and moment hysteresis data for the basic airfoil are shown in figure 3. The shape

of each loop compares well with the test data, but the predicted lift loop is consistently lower than

the test results. The computed streamline patterns at selected angles of attack are shown in figure 4.

The lift and pitching-moment loops are shown again in this figure to demonstrate the flow features in

connection with the dynamic stall. The formation of a leading-edge stall vortex and its movement from

o_ = 22.93 ° to o_ = 24.34 ° correspond to the rise in lift and the large change in pitching moment.

When the stall vortex leaves the airfoil, the lift drops sharply. The flow remains separated during the

downstroke portion of the cycle until o_ _ 12 °, but the lift and the pitching moment are maintained

approximately at the same level throughout the downstroke period. The instantaneous streamlines and

the surface pressure for the slatted airfoil are shown in figure 5; dotted lines in the Cp plots represent

the slatted airfoil, and solid lines represent the main airfoil. The shapes of the hysteresis loops are quite

similar to those of the test results in figure 2. The slatted airfoil does not show the formation of the

leading-edge vortex. The flow around the leading edge of the main airfoil remains attached during the

complete cycle. The flow starts to separate from the trailing edge of the airfoil at about o_ = 15 °, and

the separated flow never propagates to the leading edge.

Deformable Airfoils

Three types of airfoil deformation are considered in the present study: ( 1) nose deflection; (2) cam-

ber; and (3) thickness. A representative of each type of deformed airfoil is shown in figure 6. During

the oscillation motion, the airfoil deforms sinusoidally in proportion to the angle of attack; that is, the

airfoil has no deformation at the beginning of the oscillation and has maximum deformation at the

maximum angle of attack. The computed cases are for flows at a reduced frequency of 0.15 and a

Reynolds number of one million. The flow is assumed to be fully turbulent.

Figure 7 shows the surface pressures and instantaneous streamlines at selected angles of attack

during the oscillation cycle of the basic airfoil. The separation streamline starts from the trailing edge

of the airfoil and moves upstream as the angle of attack increases. At c_ = 25 °, the separation line

almost reaches the leading edge of the airfoil. A leading-edge vortex is present at this angle of attack,

but the load-hysteresis loops that are shown in figure 8 indicate that the lift drop for the airfoil begins

at a much lower angle (at approximately 21.5°). The initial lift drop is caused by the spreading of the

separation bubble that is present over the trailing edge of the airfoil. The sharp lift increase that follows

the initial lift drop is caused by the rapid formation and growth of the leading-edge vortex. The vortex

then appears to merge with the trailing-edge separation bubble, causing an the abrupt second-phase lift

drop, which corresponds to the lift stall. The airfoil experiences a large nosedown pitching moment

near the maximum angle of attack. The difference between the load-hysteresis loops shown in figure 8

and those shown in figure 3 is mainly due to the difference in the reduced fi'equency.

The instantaneous streamlines and surface pressures for the nose-deflected airfoil are shown in

figure 9. In this figure, the front 37.5 percent of the airfoil rotates down as the angle of attack increases.

The maximum deflection angle is 10 °. No leading-edge vortex is present lbr the case shown here. In

figure 10, this case is represented by (0.375 c, 10°), where the first number denotes the portion of the

airfoil that droops down and the second number denotes the maximum deflection angle. Three cases
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were computed in the present study: (0.25 c, 10°), (0.375 c, 10°), and (0.50 c, 10°). Data for all three

cases show that the leading-edge vortex is suppressed, and, therefore, no deep-lift stall is observed. The

load-hysteresis loops shown in figure 10 suggest that, among the three cases computed, the (0.375 c,

10 °) case has the best dynamic characteristics (note especially the improvement in the peak drag and

pitching moment).

The next deformation studied was for an airfoil that changes camber as the angle of attack changes.

The airfoil attains a maximum change in camber at the maximum angle of attack during the oscillation

cycle. The maximum camber change studied herein is 5 percent of the airfoil chord. Three cases having

different camber locations were computed: 40, 50, and 60 percent of the chord. The instantaneous

streamlines and the surface pressures are shown in figure I l for the case in which the camber is located

at the 50-percent-chord location. The flow is similar to that of the previous nose-deflection case, but the

surface pressure is smoother for the cambered case. The load-hysteresis loops for the three cambered

cases are shown in figure 12. It can be seen that the 40- and 50-percent cases show similar dynamic

characteristics, but the 50-percent case generates higher lift. Lift stall occurs for the 60-percent case,

although it is much milder than that for the basic airfoil. The pitching-moment behavior is similar to

that of the lift. The instantaneous streamlines for the 60-percent case, not shown here, indicate that the

separation streamline has nearly reached the leading edge of the airfoil. The 50-percent case offers the

best results among the cambered cases studied here.

The third airfoil deformation involves a thickness change. Tile airfoil thickens in proportion to

its original thickness distribution, and the thickness reaches its nmximum value at the maximum angle

of attack during the airfoil oscillation. Three different thickness changes are studied: 25-, 50-, and

75-percent increases over the original thickness. Figure 13 shows the instantaneous streamlines and the

surface pressures for the 50-percent-thickened case. As in the nose-deflection case, airfoil thickening also

suppresses the formation of the leading-edge vortex. The load-hysteresis loops for the three computed

cases, shown in figure 14, show that the lift stall is very mild for tile 25-percent-thickened airfoil and

is even milder for the other two airfoils. None of the airfoils experience moment stall. The 50-percent-

thickened airfoil has the best dynamic characteristics among the three airfoils studied.

A comparison of the three types of airfoil deformation and the effect on the dynamic stall is seen in

figure 15. Also shown are the loads for the basic airfoil. Clearly all three types have very similar drag

characteristics and all three types eliminate the moment and lift stalls. The best pitching moment results

from the thickening effect, whereas the best lift results from the cambering effect. It is concluded,

however, that the best overall dynamic characteristics (among the three types of airfoil deformation that

were studied) are achieved by varying the airfoil camber.

VORTEX-AIRFOIL INTERA CTI ONS

Figure 16, a schematic of the vortex-airfoil interaction, shows a point vortex of clockwise sense

passing under the airfoil. The flow around a Boeing VR-12 airfoil is computed for a fixed angle of

attack of 5 ° and a Reynolds number of two million. Before introducing a point vortex into the flow

field, a converged solution for an impulsively started airfoil is obtained. A point vortex of strength

-0.2v.vc c, where c is the airfoil chord length, is introduced at 5 chords upstream and 0.2 chord under
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the airfoil camber line. The vortex causes the surface pressure to fluctuate and the boundary layer to

thicken. In figure 17, the vorticity contours show a thickening of the boundary layer for two locations

of the passing vortex. The X-location of the passing vortex, Xp in the figure, is referenced to the

leading edge of the airfoil, and is normalized with the airfoil chord. In figure 18, the streamlines as

well as the surface pressures are shown for different locations of the passing vortex. The effect of

the passing vortex on the surface pressure appears clearly as a local suction perturbation on the lower

surface where the pressure first decreases and then recovers. The pressure rise in the recovery region

causes the boundary layer to thicken.

Figure 19 shows the variation of the pressure coefficient with respect to the location of the point

vortex at selected points on the airfoil surface. Also shown in the figure is the pressure difference between

the lower and upper surfaces at the same selected surface points. The large, unsteady variations in the

surface pressure are the main cause of BVI noise. Comparing the amplitudes of the variations shows

that the region close to the leading edge is a dominant source of BVI noise. For the cases studied,

the passing vortex causes a temporary thickening of the boundary layer. A potential flow solution is

clearly invalid in cases in which the strength of the vortex is sufficient to cause the boundary layer to

separate. If the flow does not separate, then the pressure response predicted by the potential solution

should match, at least to the first order, the pressure response obtained from the Navier-Stokes solution.

The feasibility of reducing the BVI noise by an active airfoil deformation was investigated. If the

sense of the point vortex is such that the approaching vortex initially induces a downwash on the airfoil,

the effective angle of attack will be temporarily reduced. To compensate for the resulting reduction in

leading-edge suction, the front part of the airfoil is rotated upward as the point vortex approaches the

airfoil. It then is rotated back as the vortex passes under the leading edge of the airfoil. Computations

are presently limited to three locations for the center of rotation: 12.5, 25, and 37.5 percent of the airfoil

chord, and two rotation angles: 5 ° and 10 °, measured from the airfoil camber line. The effect of the

airfoil deformation is demonstrated in figure 20, where the streamlines and the surface pressures are

shown. In this figure, the case with the rotation centered at 25-percent chord and a rotation angle of 5 °

is shown (0.25 c, 5°). The front part of the airfoil starts to rotate upward at Xp = -0.26, reaches its

maximum deflection angle at Xp = 0.02, and finally returns to its original position at Xp = 0.29.

In figure 21, the surface pressure at 5-percent chord is shown with respect to the X-location of

the passing vortex. Also shown are the pressures for the basic airfoil and for another deformed case

(0.25 c, 10°). Both of the deformed cases show an improvement in the unsteady pressure fluctuation

on the lower surface; that is, not only is the amplitude of the pressure fluctuation reduced, but the slope

of the pressure rise after the point vortex has passed the leading edge also is reduced. The amplitude

of the pressure fluctuation is measured by the difference between the minimum pressure and the local

maximum immediately after the point vortex passes the leading edge. The two deformed cases show a

reduction in the magnitude of the fluctuation by approximately the same amount, about 30 percent of the

original value. However, the (0.25 c, 10 °) case results in a pressure that rises (or recovers) at a slower

rate. This indicates that the 10 ° angle is a better choice for reducing the BV| noise that originates from

the lower surface of the airfoil. On the upper surface, the pressure fluctuation is aggravated by the

airfoil deformation. The amplitude of the pressure fluctuation is increased by 6 percent of the original

value for the (0.25 c, 5 °) case and by 15 percent for the (0.25 c, 10 °) case. Here the magnitude of

the pressure fluctuation is measured by the difference between the maximum pressure and the local

minimum immediately after the point vortex passes the leading edge of the airfoil.
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The overall improvement achieved in these two cases can be judged by comparing the resulting

lift variation with that of the basic airfoil, as shown in figure 22. The figure shows that the (0.25 c, 5 °)

case is a better choice than the (0.25 c, 10 °) case because the magnitude of the lift variation is smaller

and the slope of the lift variation is milder. Similar results were obtained when comparisons were made

between (0.125 c, 5 °) and (0.125 e, 10 °) and between (0.375 c, 5 °) and (0.375 c, 10°).

Figure 23 shows a comparison of the computed pressures for the deformed cases (0.125 c, 5°),

(0.25 c, 5°), and (0.375 c, 5 °) with that of the basic airfoil. At the 5-percem-chord location, the pressure

variation is most improved in the (0.375 c, 5 °) case, even though this case is not much different from

the (0.25 c, 5 °) case. However, the pressure on the upper surface in the (0.375 c, 5 °) case shows a

clear advantage over the other two deformed cases. The unsteady lift is shown in figure 24, where it

is evident that, among the present cases studied, the (0.375 c, 5 °) case is the best for improving the

unsteady-lift variation caused by the passing vortex. The drag and the moment coefficients are also

shown in the figure. It should be noted that the reduction of the pressure fluctuation is accompanied by

a drag rise and a larger fluctuation of the pitching moment.

CONCLUSIONS

1. A numerical method, based on a vorticity-velocity formulation and an integral representation

for the velocity vector, is extended for treating problems of multielement airfoils, deformable airfoils,

and vortex-airfoil interactions. The high efficiency of the numerical approach offers an effective way

of conducting parametric studies for the demonstration of new concepts. These concepts are applied

to the design of helicopter blades in order to reduce dynamic stall and BVI noise. Under the present

effort, a passive, slatted airfoil and an active, deformable airfoil were extensively investigated.

2. The dynamic stall can be reduced by adding a slat or by using airfoil deformation. Three

types of airfoil deformation were investigated: airfoil nose deflection, airfoil camber change, and airfoil

thickening. Even though all three are effective in reducing the dynamic stall, the most effective was

found to be the camber change.

3. The BVI noise can be reduced by airfoil deformation. A particular type that was studied is the

upward deflection of the front part of the airfoil as a vortex passes underneath it and close to the leading

edge. The amplitude as well as the rate of variation of the pressure fluctuation on the lower surface of

the airfoil are reduced. A best-deformation case was identified under the range of parameters studied

in the present work.

4. The current ZETA II code is capable of predicting complex, unsteady flows under certain flow

conditions. For laminar flows and high-Reynolds-number flows, the code predicts quantitatively well the

aerodynamic loads and flow features. For flows of intermediate Reynolds numbers, where the laminar-

turbulent transition is important, the code predicts well only qualitatively. The simple, eddy-turbulence

model used here may not be adequate to treat this type of flow. Further investigations utilizing more

accurate turbulence models are needed.

5. Other new concepts that are potentially capable of reducing dynamic stall and BVI noise can

be investigated by the present ZETA II code with minor exmnsions or modifications. The surface

blowing/suction case, for example, can be studied by modifying the velocity boundary condition in the
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numericalprocedure.Thepredictedaerodynamiccharacteristicswith respectto a varietyof parameters
selectedin the computationcan provide a valuableguide for specifyinga limited parameterset for
experiments.Theexperimentsalsocandeterminethe validity of the computercode.
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Figure 18. Streamlines and surface pressures during vortex-airfoil interaction for the basic VR- 12 airfoil.
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Figure 20. Streamlines and surface pressures during vortex-airfoil interaction for a deforming VR- 12
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Figure 21. Comparison of pressure fluctuations at 5-percent chord for nose-deflected VR-12 airfoils.
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Figure 22. Comparison of lift coefficients for nose-deflected VR- I2 airfoils.
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